Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496682

RESUMEN

Multiplexed bimolecular profiling of tissue microenvironment, or spatial omics, can provide deep insight into cellular compositions and interactions in both normal and diseased tissues. Proteome-scale tissue mapping, which aims to unbiasedly visualize all the proteins in whole tissue section or region of interest, has attracted significant interest because it holds great potential to directly reveal diagnostic biomarkers and therapeutic targets. While many approaches are available, however, proteome mapping still exhibits significant technical challenges in both protein coverage and analytical throughput. Since many of these existing challenges are associated with mass spectrometry-based protein identification and quantification, we performed a detailed benchmarking study of three protein quantification methods for spatial proteome mapping, including label-free, TMT-MS2, and TMT-MS3. Our study indicates label-free method provided the deepest coverages of ~3500 proteins at a spatial resolution of 50 µm and the largest quantification dynamic range, while TMT-MS2 method holds great benefit in mapping throughput at >125 pixels per day. The evaluation also indicates both label-free and TMT-MS2 provide robust protein quantifications in terms of identifying differentially abundant proteins and spatially co-variable clusters. In the study of pancreatic islet microenvironment, we demonstrated deep proteome mapping not only enables to identify protein markers specific to different cell types, but more importantly, it also reveals unknown or hidden protein patterns by spatial co-expression analysis.

2.
Plant J ; 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407828

RESUMEN

Bioenergy sorghum is a low-input, drought-resilient, deep-rooting annual crop that has high biomass yield potential enabling the sustainable production of biofuels, biopower, and bioproducts. Bioenergy sorghum's 4-5 m stems account for ~80% of the harvested biomass. Stems accumulate high levels of sucrose that could be used to synthesize bioethanol and useful biopolymers if information about cell-type gene expression and regulation in stems was available to enable engineering. To obtain this information, laser capture microdissection was used to isolate and collect transcriptome profiles from five major cell types that are present in stems of the sweet sorghum Wray. Transcriptome analysis identified genes with cell-type-specific and cell-preferred expression patterns that reflect the distinct metabolic, transport, and regulatory functions of each cell type. Analysis of cell-type-specific gene regulatory networks (GRNs) revealed that unique transcription factor families contribute to distinct regulatory landscapes, where regulation is organized through various modes and identifiable network motifs. Cell-specific transcriptome data was combined with known secondary cell wall (SCW) networks to identify the GRNs that differentially activate SCW formation in vascular sclerenchyma and epidermal cells. The spatial transcriptomic dataset provides a valuable source of information about the function of different sorghum cell types and GRNs that will enable the engineering of bioenergy sorghum stems, and an interactive web application developed during this project will allow easy access and exploration of the data (https://mc-lab.shinyapps.io/lcm-dataset/).

3.
ACS Meas Sci Au ; 3(6): 459-468, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38145026

RESUMEN

Multiplexed molecular profiling of tissue microenvironments, or spatial omics, can provide critical insights into cellular functions and disease pathology. The coupling of laser microdissection with mass spectrometry-based proteomics has enabled deep and unbiased mapping of >1000 proteins. However, the throughput of laser microdissection is often limited due to tedious two-step procedures, sequential laser cutting, and sample collection. The two-step procedure also hinders the further improvement of spatial resolution to <10 µm as needed for subcellular proteomics. Herein, we developed a high-throughput and high-resolution spatial proteomics platform by seamlessly coupling deep ultraviolet (DUV) laser ablation (LA) with nanoPOTS (Nanodroplet Processing in One pot for Trace Samples)-based sample preparation. We demonstrated the DUV-LA system can quickly isolate and collect tissue samples at a throughput of ∼30 spots/min and a spatial resolution down to 2 µm from a 10 µm thick human pancreas tissue section. To improve sample recovery, we developed a proximity aerosol collection approach by placing DMSO droplets close to LA spots. We demonstrated the DUV-LA-nanoPOTS platform can detect an average of 1312, 1533, and 1966 proteins from ablation spots with diameters of 7, 13, and 19 µm, respectively. In a proof-of-concept study, we isolated and profiled two distinct subcellular regions of the pancreas tissue revealed by hematoxylin and eosin (H&E) staining. Quantitative proteomics revealed proteins specifically enriched to subcellular compartments.

4.
PLoS One ; 18(12): e0287943, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38153952

RESUMEN

Since industrialization began, atmospheric CO2 ([CO2]) has increased from 270 to 415 ppm and is projected to reach 800-1000 ppm this century. Some Arabidopsis thaliana (Arabidopsis) genotypes delayed flowering in elevated [CO2] relative to current [CO2], while others showed no change or accelerations. To predict genotype-specific flowering behaviors, we must understand the mechanisms driving flowering response to rising [CO2]. [CO2] changes alter photosynthesis and carbohydrates in plants. Plants sense carbohydrate levels, and exogenous carbohydrate application influences flowering time and flowering transcript levels. We asked how organismal changes in carbohydrates and transcription correlate with changes in flowering time under elevated [CO2]. We used a genotype (SG) of Arabidopsis that was selected for high fitness at elevated [CO2] (700 ppm). SG delays flowering under elevated [CO2] (700 ppm) relative to current [CO2] (400 ppm). We compared SG to a closely related control genotype (CG) that shows no [CO2]-induced flowering change. We compared metabolomic and transcriptomic profiles in these genotypes at current and elevated [CO2] to assess correlations with flowering in these conditions. While both genotypes altered carbohydrates in response to elevated [CO2], SG had higher levels of sucrose than CG and showed a stronger increase in glucose and fructose in elevated [CO2]. Both genotypes demonstrated transcriptional changes, with CG increasing genes related to fructose 1,6-bisphosphate breakdown, amino acid synthesis, and secondary metabolites; and SG decreasing genes related to starch and sugar metabolism, but increasing genes involved in oligosaccharide production and sugar modifications. Genes associated with flowering regulation within the photoperiod, vernalization, and meristem identity pathways were altered in these genotypes. Elevated [CO2] may alter carbohydrates to influence transcription in both genotypes and delayed flowering in SG. Changes in the oligosaccharide pool may contribute to delayed flowering in SG. This work extends the literature exploring genotypic-specific flowering responses to elevated [CO2].


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Genotipo , Carbohidratos , Oligosacáridos/metabolismo , Azúcares/metabolismo , Regulación de la Expresión Génica de las Plantas , Flores/metabolismo , Hojas de la Planta/metabolismo
5.
ISME J ; 17(12): 2326-2339, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37880541

RESUMEN

In many anoxic environments, syntrophic acetate oxidation (SAO) is a key pathway mediating the conversion of acetate into methane through obligate cross-feeding interactions between SAO bacteria (SAOB) and methanogenic archaea. The SAO pathway is particularly important in engineered environments such as anaerobic digestion (AD) systems operating at thermophilic temperatures and/or with high ammonia. Despite the widespread importance of SAOB to the stability of the AD process, little is known about their in situ physiologies due to typically low biomass yields and resistance to isolation. Here, we performed a long-term (300-day) continuous enrichment of a thermophilic (55 °C) SAO community from a municipal AD system using acetate as the sole carbon source. Over 80% of the enriched bioreactor metagenome belonged to a three-member consortium, including an acetate-oxidizing bacterium affiliated with DTU068 encoding for carbon dioxide, hydrogen, and formate production, along with two methanogenic archaea affiliated with Methanothermobacter_A. Stable isotope probing was coupled with metaproteogenomics to quantify carbon flux into each community member during acetate conversion and inform metabolic reconstruction and genome-scale modeling. This effort revealed that the two Methanothermobacter_A species differed in their preferred electron donors, with one possessing the ability to grow on formate and the other only consuming hydrogen. A thermodynamic analysis suggested that the presence of the formate-consuming methanogen broadened the environmental conditions where ATP production from SAO was favorable. Collectively, these results highlight how flexibility in electron partitioning during SAO likely governs community structure and fitness through thermodynamic-driven mutualism, shedding valuable insights into the metabolic underpinnings of this key functional group within methanogenic ecosystems.


Asunto(s)
Ecosistema , Euryarchaeota , Anaerobiosis , Electrones , Acetatos/metabolismo , Bacterias , Archaea , Euryarchaeota/metabolismo , Oxidación-Reducción , Hidrógeno/metabolismo , Formiatos/metabolismo , Metano/metabolismo
6.
Nat Commun ; 14(1): 3371, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37291101

RESUMEN

In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency (frq). FRQ interacts with FRH (FRQ-interacting RNA helicase) and CKI, forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8, that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone h2a.z, and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.


Asunto(s)
Relojes Circadianos , Neurospora crassa , Relojes Circadianos/genética , Neurospora crassa/metabolismo , Ritmo Circadiano/genética , ARN Helicasas/metabolismo , Cromatina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica
7.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37162945

RESUMEN

In the Neurospora circadian system, the White Collar Complex (WCC) drives expression of the principal circadian negative arm component frequency ( frq ). FRQ interacts with FRH (FRQ-interacting helicase) and CK-1 forming a stable complex that represses its own expression by inhibiting WCC. In this study, a genetic screen identified a gene, designated as brd-8 , that encodes a conserved auxiliary subunit of the NuA4 histone acetylation complex. Loss of brd-8 reduces H4 acetylation and RNA polymerase (Pol) II occupancy at frq and other known circadian genes, and leads to a long circadian period, delayed phase, and defective overt circadian output at some temperatures. In addition to strongly associating with the NuA4 histone acetyltransferase complex, BRD-8 is also found complexed with the transcription elongation regulator BYE-1. Expression of brd-8, bye-1, histone hH2Az , and several NuA4 subunits is controlled by the circadian clock, indicating that the molecular clock both regulates the basic chromatin status and is regulated by changes in chromatin. Taken together, our data identify new auxiliary elements of the fungal NuA4 complex having homology to mammalian components, which along with conventional NuA4 subunits, are required for timely and dynamic frq expression and thereby a normal and persistent circadian rhythm.

8.
Microorganisms ; 10(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35630387

RESUMEN

The dynamics of microbial processes are difficult to study in natural soil, owing to the small spatial scales on which microorganisms operate and to the opacity and chemical complexity of the soil habitat. To circumvent these challenges, we have created a 3D-bioprinted habitat that mimics aspects of natural soil aggregates while providing a chemically defined and translucent alternative culturing method for soil microorganisms. Our Synthetic Soil Aggregates (SSAs) retain the porosity, permeability, and patchy resource distribution of natural soil aggregates-parameters that are expected to influence emergent microbial community interactions. We demonstrate the printability and viability of several different microorganisms within SSAs and show how the SSAs can be integrated into a multi-omics workflow for single SSA resolution genomics, metabolomics, proteomics, lipidomics, and biogeochemical assays. We study the impact of the structured habitat on the distribution of a model co-culture microbial community and find that it is significantly different from the spatial organization of the same community in liquid culture, indicating a potential for SSAs to reproduce naturally occurring emergent community phenotypes. The SSAs have the potential as a tool to help researchers quantify microbial scale processes in situ and achieve high-resolution data from the interplay between environmental properties and microbial ecology.

9.
Appl Environ Microbiol ; 88(8): e0018822, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35348388

RESUMEN

Brown rot fungi dominate wood decomposition in coniferous forests, and their carbohydrate-selective mechanisms are of commercial interest. Brown rot was recently described as a two-step, sequential mechanism orchestrated by fungi using differentially expressed genes (DEGs) and consisting of oxidation via reactive oxygen species (ROS) followed by enzymatic saccharification. There have been indications, however, that the initial oxidation step itself might require induction. To capture this early gene regulation event, here, we integrated fine-scale cryosectioning with whole-transcriptome sequencing to dissect gene expression at the single-hyphal-cell scale (tens of micrometers). This improved the spatial resolution 50-fold, relative to previous work, and we were able to capture the activity of the first 100 µm of hyphal front growth by Rhodonia placenta in aspen wood. This early decay period was dominated by delayed gene expression patterns as the fungus ramped up its mechanism. These delayed DEGs included many genes implicated in ROS pathways (lignocellulose oxidation [LOX]) that were previously and incorrectly assumed to be constitutively expressed. These delayed DEGs, which include those with and without predicted functions, also create a focused subset of target genes for functional genomics. However, this delayed pattern was not universal, with a few genes being upregulated immediately at the hyphal front. Most notably, this included a gene commonly implicated in hydroquinone and iron redox cycling: benzoquinone reductase. IMPORTANCE Earth's aboveground terrestrial biomass is primarily wood, and fungi dominate wood decomposition. Here, we studied these fungal pathways in a common "brown rot"-type fungus, Rhodonia placenta, that selectively extracts sugars from carbohydrates embedded within wood lignin. Using a space-for-time design to map fungal gene expression at the extreme hyphal front in wood, we made two discoveries. First, we found that many genes long assumed to be "on" (constitutively expressed) from the very beginning of decay were instead "off" before being upregulated, when mapped (via transcriptome sequencing [RNA-seq]) at a high resolution. Second, we found that the gene encoding benzoquinone reductase was "on" in incipient decay and quickly downregulated, implying a key role in "kick-starting" brown rot.


Asunto(s)
Polyporales , Madera , Benzoquinonas/metabolismo , Expresión Génica , Oxidorreductasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Madera/microbiología
10.
ISME J ; 16(4): 1074-1085, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34845335

RESUMEN

Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum-Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant-cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.


Asunto(s)
Nostoc , Simbiosis , Carbono/metabolismo , Ecosistema , Nitrógeno/metabolismo , Nostoc/fisiología
12.
Nat Commun ; 12(1): 6246, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716329

RESUMEN

Global quantification of protein abundances in single cells could provide direct information on cellular phenotypes and complement transcriptomics measurements. However, single-cell proteomics is still immature and confronts many technical challenges. Herein we describe a nested nanoPOTS (N2) chip to improve protein recovery, operation robustness, and processing throughput for isobaric-labeling-based scProteomics workflow. The N2 chip reduces reaction volume to <30 nL and increases capacity to >240 single cells on a single microchip. The tandem mass tag (TMT) pooling step is simplified by adding a microliter droplet on the nested nanowells to combine labeled single-cell samples. In the analysis of ~100 individual cells from three different cell lines, we demonstrate that the N2 chip-based scProteomics platform can robustly quantify ~1500 proteins and reveal membrane protein markers. Our analyses also reveal low protein abundance variations, suggesting the single-cell proteome profiles are highly stable for the cells cultured under identical conditions.


Asunto(s)
Proteómica/instrumentación , Proteómica/métodos , Análisis de la Célula Individual/instrumentación , Análisis de la Célula Individual/métodos , Animales , Biomarcadores/análisis , Línea Celular , Diseño de Equipo , Dispositivos Laboratorio en un Chip , Ratones , Nanoestructuras/química , Proteínas/análisis , Células RAW 264.7 , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Manejo de Especímenes/instrumentación , Manejo de Especímenes/métodos , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo
13.
Front Bioeng Biotechnol ; 9: 644216, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763411

RESUMEN

The filamentous ascomycete Aspergillus niger has received increasing interest as a cell factory, being able to efficiently degrade plant cell wall polysaccharides as well as having an extensive metabolism to convert the released monosaccharides into value added compounds. The pentoses D-xylose and L-arabinose are the most abundant monosaccharides in plant biomass after the hexose D-glucose, being major constituents of xylan, pectin and xyloglucan. In this study, the influence of selected pentose catabolic pathway (PCP) deletion strains on growth on plant biomass and re-routing of sugar catabolism was addressed to gain a better understanding of the flexibility of this fungus in using plant biomass-derived monomers. The transcriptome, metabolome and proteome response of three PCP mutant strains, ΔlarAΔxyrAΔxyrB, ΔladAΔxdhAΔsdhA and ΔxkiA, grown on wheat bran (WB) and sugar beet pulp (SBP), was evaluated. Our results showed that despite the absolute impact of these PCP mutations on pure pentose sugars, they are not as critical for growth of A. niger on more complex biomass substrates, such as WB and SBP. However, significant phenotypic variation was observed between the two biomass substrates, but also between the different PCP mutants. This shows that the high sugar heterogeneity of these substrates in combination with the high complexity and adaptability of the fungal sugar metabolism allow for activation of alternative strategies to support growth.

14.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33622792

RESUMEN

Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.


Asunto(s)
Hongos/metabolismo , Lignina/metabolismo , Redes y Vías Metabólicas , Biopolímeros/metabolismo , Biotransformación , Ecosistema , Compuestos Orgánicos/metabolismo , Microbiología del Suelo
15.
mSystems ; 6(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33402348

RESUMEN

Iron (Fe) availability has well-known effects on plant and microbial metabolism, but its effects on interspecies interactions are poorly understood. The purpose of this study was to investigate metabolite exchange between the grass Brachypodium distachyon strain Bd21 and the soil bacterium Pseudomonas fluorescens SBW25::gfp/lux (SBW25) during Fe limitation under axenic conditions. We compared the transcriptional profiles and root exudate metabolites of B. distachyon plants grown semihydroponically with and without SBW25 inoculation and Fe amendment. Liquid chromatography-mass spectrometry analysis of the hydroponic solution revealed an increase in the abundance of the phytosiderophores mugineic acid and deoxymugineic acid under Fe-limited conditions compared to Fe-replete conditions, indicating greater secretion by roots presumably to facilitate Fe uptake. In SBW25-inoculated roots, expression of genes encoding phytosiderophore biosynthesis and uptake proteins increased compared to that in sterile roots, but external phytosiderophore abundances decreased. P. fluorescens siderophores were not detected in treatments without Fe. Rather, expression of SBW25 genes encoding a porin, a transporter, and a monooxygenase was significantly upregulated in response to Fe deprivation. Collectively, these results suggest that SBW25 consumed root-exuded phytosiderophores in response to Fe deficiency, and we propose target genes that may be involved. SBW25 also altered the expression of root genes encoding defense-related enzymes and regulators, including thionin and cyanogenic glycoside production, chitinase, and peroxidase activity, and transcription factors. Our findings provide insights into the molecular bases for the stress response and metabolite exchange of interacting plants and bacteria under Fe-deficient conditions.IMPORTANCE Rhizosphere bacteria influence the growth of their host plant by consuming and producing metabolites, nutrients, and antibiotic compounds within the root system that affect plant metabolism. Under Fe-limited growth conditions, different plant and microbial species have distinct Fe acquisition strategies, often involving the secretion of strong Fe-binding chelators that scavenge Fe and facilitate uptake. Here, we studied interactions between P. fluorescens SBW25, a plant-colonizing bacterium that produces siderophores with antifungal properties, and B. distachyon, a genetic model for cereal grain and biofuel grasses. Under controlled growth conditions, bacterial siderophore production was inhibited in the root system of Fe-deficient plants, bacterial inoculation altered transcription of genes involved in defense and stress response in the roots of B. distachyon, and SBW25 degraded phytosiderophores secreted by the host plant. These findings provide mechanistic insight into interactions that may play a role in rhizosphere dynamics and plant health in soils with low Fe solubility.

16.
Environ Microbiol ; 22(3): 1154-1166, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31876091

RESUMEN

Saprobic fungi, such as Aspergillus niger, grow as colonies consisting of a network of branching and fusing hyphae that are often considered to be relatively uniform entities in which nutrients can freely move through the hyphae. In nature, different parts of a colony are often exposed to different nutrients. We have investigated, using a multi-omics approach, adaptation of A. niger colonies to spatially separated and compositionally different plant biomass substrates. This demonstrated a high level of intra-colony differentiation, which closely matched the locally available substrate. The part of the colony exposed to pectin-rich sugar beet pulp and to xylan-rich wheat bran showed high pectinolytic and high xylanolytic transcript and protein levels respectively. This study therefore exemplifies the high ability of fungal colonies to differentiate and adapt to local conditions, ensuring efficient use of the available nutrients, rather than maintaining a uniform physiology throughout the colony.


Asunto(s)
Adaptación Fisiológica , Aspergillus niger/metabolismo , Carbono/metabolismo , Biomasa , Hifa/metabolismo , Pectinas/metabolismo
17.
Planta ; 250(6): 1941-1953, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31529398

RESUMEN

MAIN CONCLUSION: Unlike rosette leaves, the mature Arabidopsis rosette core can display full resistance to Botrytis cinerea revealing the importance for spatial and developmental aspects of plant fungal resistance. Arabidopsis thaliana is a model host to investigate plant defense against fungi. However, many of the reports investigating Arabidopsis fungal defense against the necrotrophic fungus, Botrytis cinerea, utilize rosette leaves as host tissue. Here we report organ-dependent differences in B. cinerea resistance of Arabidopsis. Although wild-type Arabidopsis rosette leaves mount a jasmonate-dependent defense that slows fungal growth, this defense is incapable of resisting fungal devastation. In contrast, as the fungus spreads through infected leaf petioles towards the plant center, or rosette core, there is a jasmonate- and age-dependent fungal penetration blockage into the rosette core. We report evidence for induced and preformed resistance in the rosette core, as direct rosette core inoculation can also result in resistance, but at a lower penetrance relative to infections that approach the core from infected leaf petioles. The Arabidopsis rosette core displays a distinct transcriptome relative to other plant organs, and BLADE ON PETIOLE (BOP) transcripts are abundant in the rosette core. The BOP genes, with known roles in abscission zone formation, are required for full Arabidopsis rosette core B. cinerea resistance, suggesting a possible role for BOP-dependent modifications that may help to restrict fungal susceptibility of the rosette core. Finally, we demonstrate that cabbage and cauliflower, common Brassicaceae crops, also display leaf susceptibility and rosette core resistance to B. cinerea that can involve leaf abscission. Thus, spatial and developmental aspects of plant host resistance play critical roles in resistance to necrotrophic fungal pathogens and are important to our understanding of plant defense mechanisms.


Asunto(s)
Arabidopsis/inmunología , Resistencia a la Enfermedad , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Arabidopsis/microbiología , Arabidopsis/fisiología , Botrytis , Perfilación de la Expresión Génica , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Appl Environ Microbiol ; 85(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30979841

RESUMEN

Alcohols are commonly derived from the degradation of organic matter and yet are rarely measured in environmental samples. Wetlands in the Prairie Pothole Region (PPR) support extremely high methane emissions and the highest sulfate reduction rates reported to date, likely contributing to a significant proportion of organic matter mineralization in this system. While ethanol and isopropanol concentrations up to 4 to 5 mM in PPR wetland pore fluids have been implicated in sustaining these high rates of microbial activity, the mechanisms that support alcohol cycling in this ecosystem are poorly understood. We leveraged metagenomic and transcriptomic tools to identify genes, pathways, and microorganisms potentially accounting for alcohol cycling in PPR wetlands. Phylogenetic analyses revealed diverse alcohol dehydrogenases and putative substrates. Alcohol dehydrogenase and aldehyde dehydrogenase genes were included in 62 metagenome-assembled genomes (MAGs) affiliated with 16 phyla. The most frequently encoded pathway (in 30 MAGs) potentially accounting for alcohol production was a Pyrococcus furiosus-like fermentation which can involve pyruvate:ferredoxin oxidoreductase (PFOR). Transcripts for 93 of 137 PFOR genes in these MAGs were detected, as well as for 158 of 243 alcohol dehydrogenase genes retrieved from these same MAGs. Mixed acid fermentation and heterofermentative lactate fermentation were also frequently encoded. Finally, we identified 19 novel putative isopropanol dehydrogenases in 15 MAGs affiliated with Proteobacteria, Acidobacteria, Chloroflexi, Planctomycetes, Ignavibacteriae, Thaumarchaeota, and the candidate divisions KSB1 and Rokubacteria We conclude that diverse microorganisms may use uncommon and potentially novel pathways to produce ethanol and isopropanol in PPR wetland sediments.IMPORTANCE Understanding patterns of organic matter degradation in wetlands is essential for identifying the substrates and mechanisms supporting greenhouse gas production and emissions from wetlands, the main natural source of methane in the atmosphere. Alcohols are common fermentation products but are poorly studied as key intermediates in organic matter degradation in wetlands. By investigating genes, pathways, and microorganisms potentially accounting for the high concentrations of ethanol and isopropanol measured in Prairie Pothole wetland sediments, this work advanced our understanding of alcohol fermentations in wetlands linked to extremely high greenhouse gas emissions. Moreover, the novel alcohol dehydrogenases and microbial taxa potentially involved in alcohol metabolism may serve biotechnological efforts in bioengineering commercially valuable alcohol production and in the discovery of novel isopropanol producers or isopropanol fermentation pathways.


Asunto(s)
Alcoholes/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Metagenoma , Microbiota , North Dakota , Análisis de Secuencia de ADN , Humedales
19.
Fungal Genet Biol ; 123: 33-40, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30529285

RESUMEN

Wood-decomposing fungi efficiently decompose plant lignocellulose, and there is increasing interest in characterizing and perhaps harnessing the fungal gene regulation strategies that enable wood decomposition. Proper interpretation of these fungal mechanisms relies on accurate quantification of gene expression, demanding reliable internal control genes (ICGs) as references. Commonly used ICGs such as actin, however, fluctuate among wood-decomposing fungi under defined conditions. In this study, by mining RNA-seq data in silico and validating ICGs in vitro using qRT-PCR, we targeted more reliable ICGs for studying transcriptional responses in wood-decomposing fungi, particularly responses to changing environments (e.g., carbon sources, decomposition stages) in various culture conditions. Using the model brown rot fungus Postia placenta in a first-pass study, our mining efforts yielded 15 constitutively-expressed genes robust in variable carbon sources (e.g., no carbon, glucose, cellobiose, aspen) and cultivation stages (e.g., 15 h, 72 h) in submerged cultures. Of these, we found 7 genes as most suitable ICGs. Expression stabilities of these newly selected ICGs were better than commonly used ICGs, analyzed by NormFinder algorithm and qRT-PCR. In a second-pass, multi-species study in solid wood, our RNA-seq mining efforts revealed hundreds of highly constitutively expressed genes among four wood-decomposing fungi with varying nutritional modes (brown rot, white rot), including a shared core set of ICGs numbering 11 genes. Together, the newly selected ICGs highlighted here will increase reliability when studying gene regulatory mechanisms of wood-decomposing fungi.


Asunto(s)
Hongos/genética , Lignina/genética , Madera/microbiología , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/genética , Madera/genética
20.
ISME J ; 12(6): 1605-1618, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29568113

RESUMEN

Phage-host interactions are critical to ecology, evolution, and biotechnology. Central to those is infection efficiency, which remains poorly understood, particularly in nature. Here we apply genome-wide transcriptomics and proteomics to investigate infection efficiency in nature's own experiment: two nearly identical (genetically and physiologically) Bacteroidetes bacterial strains (host18 and host38) that are genetically intractable, but environmentally important, where phage infection efficiency varies. On host18, specialist phage phi18:3 infects efficiently, whereas generalist phi38:1 infects inefficiently. On host38, only phi38:1 infects, and efficiently. Overall, phi18:3 globally repressed host18's transcriptome and proteome, expressed genes that likely evaded host restriction/modification (R/M) defenses and controlled its metabolism, and synchronized phage transcription with translation. In contrast, phi38:1 failed to repress host18's transcriptome and proteome, did not evade host R/M defenses or express genes for metabolism control, did not synchronize transcripts with proteins and its protein abundances were likely targeted by host proteases. However, on host38, phi38:1 globally repressed host transcriptome and proteome, synchronized phage transcription with translation, and infected host38 efficiently. Together these findings reveal multiple infection inefficiencies. While this contrasts the single mechanisms often revealed in laboratory mutant studies, it likely better reflects the phage-host interaction dynamics that occur in nature.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteroidetes/virología , Proteoma/genética , Transcriptoma , Bacteroidetes/fisiología , Flavobacteriaceae/fisiología , Flavobacteriaceae/virología , Genómica , Metabolómica , Mutación , Biosíntesis de Proteínas , Proteómica , Análisis de Secuencia de ARN , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...